DOI: http://dx.doi.org/10.18782/2320-7051.6795

Research Article

Cross-Infectivity of *Colletotrichum* Isolates, Causal Agent of Anthracnose on Fruits in Three Regions of Cameroon

Keuete Kamdoum E.^{1*}, Tsopmbeng Noumbo G. R.¹ and Kuiate J. R.²

¹Research Unit of Applied Botany, Faculty of Science, University of Dschang, Box 67 Dschang, Cameroon ²Research Unit of Microbiology and Antimicrobial Substances, Faculty of Science, University of Dschang, Box 67 Dschang, Cameroon *Corresponding Author E-mail: keuetekamdoumelie@yahoo.fr

Received: 15.07.2018 | Revised: 19.08.2018 | Accepted: 25.08.2018

ABSTRACT

Anthracnose, caused by Colletotrichum spp., is one of the main constraints to the commercialisation and exportation of fruits in Cameroon. The present study was designed to test the ability of the pathogen isolates from five fruits; avocado, banana, mango, pawpaw and plum to cause disease by cross-infectivity between fruits crops. Isolates of the pathogen were cultured in Potato Dextrose Agar (PDA). Pathogenicity and cross-infectivity of Colletotrichum spp. were carried on each of the five apparently healthy fruits collected from market in Dschang, West Region of Cameroon using wound inoculation method and dropping inoculation method. The results showed that lesion areas induced by different Colletotrichum isolates, varied with the fruit, the isolate as well as the origin of the isolates. Isolates of Colletotrichum formed larger lesion on fruits with the wound inoculation method compared to dropping inoculation method. Based on those lesions, three groups of isolates were found with the two methods. AVIS1, BAIS1, MAIS1, PAIS and SAIS isolates produced larger lesions, AVIS2 and MAIS2 induced smaller lesions and BAIS2 did not form any lesion except on banana, the original host. These results suggest further characterisation for a better identification and development of control strategies for the fungus.

Key words: Anthracnose, Colletotrichum isolates, Cross-infectivity, Fruits, Lesion areas

INTRODUCTION

Fruits are important items of high commercial and nutritional value. Fruits constitute an essential part of the human diet because of their nutrients' contents. They also contribute to the improvement of the social well-being of populations by providing the organism with vitamins, minerals and fibres essential for health¹. Cameroon has a high potential for fruit production and the main production areas are Centre, Littoral and West regions². Fruit sector; which has been neglected in the past, is currently in expansion with an increasing production over the last two decades³. This increase can be justified by the fact that fruit marketing has become an important part of the Cameroonian economy as it generates large income for the populations⁴.

Cite this article: Keuete Kamdoum, E., Tsopmbeng Noumbo, G.R. and Kuiate, J.R., Cross-Infectivity of Colletotrichum Isolates, Causal Agent of Anthracnose on Fruits in Three Regions of Cameroon, *Int. J. Pure App. Biosci.* **6(4)**: 1-10 (2018). doi: http://dx.doi.org/10.18782/2320-7051.6795

Int. J. Pure App. Biosci. 6 (4): 1-10 (2018)

ISSN: 2320 – 7051

Fruits are sold in different markets of Economic and Monetary Community of Central Africa (CEMAC), European Union (EU) and America⁵. In 2010, Cameroon were avocados (834.4 tons), bananas (262 890 tons), mangoes (1560.4 tons), pawpaw (17 611 tons) and plums (473.4 tons) were the main exported fruits which yielded about 76 billion francs CFA⁴.

In Cameroon, the constraints that hinder the development of the fruit sector and its maintenance at a level that could respond to national and international demands in terms of quantity and quality of products concerns the depreciation of the quality due to many pests and to the packaging, transportation and storage deficits. Deterioration of fruit is mostly due to post-harvest diseases of fungal origin. Among those fungal diseases, anthracnose caused by Colletotrichum spp. is the most frequent one that degrades the quality and quantity of fruits, reduces the market value leading to post-harvest fruit loss varying between 20 % and 50 %6. The works of Keuete⁷ showed that Colletotrichum gleoesporioides the was most frequent pathogen in avocado fruits.

Anthracnose is a disease that develops on plants belonging to highly varied families and is responsible for damages affecting mainly the aerial parts of plants: leaves, flowers and fruits^{8,9,10}. Similarly, those of Shanti et al.11 showed that isolates of Colletotrichum gloeosporioides after injury on mangoes, pawpaw and rambutans induced lesions of anthracnose. Colletotrichum gloeosporioides isolates inoculated on avocado and mango fruits produced symptoms of anthracnose at significantly identical degrees 1^{12} . Sanders and Korsten¹³ reported that crossinoculation of Colletotrichum gleoesporioides isolated from mango and avocado fruits showed large lesions on the hosts fruits and produced lesions on other fruits except on lemon fruits. Isolates of Colletotrichum gloeosporioides isolated from mango fruits produced symptoms of anthracnose in fruits¹⁴. pawpaw, avocado and guava However, species such as Colletotrichum

kahawae infects only coffee berries, *C. coccodes* can produce symptoms of anthracnose only in tomato fruits and potato tubers, *C. falcatum* infects only sugar-cane and *C. musae* produces symptoms of anthracnose only in bananas^{8,15,16,17,18,19}.

The aims of the study are to test the ability and level of host preference of different isolates of *Colletotrichum* from various fruits to cause disease on others, to provide information on post-harvest disease management.

MATERIAL AND METHODS Isolation of *Colletotrichum* species

Fruits (avocado, banana, mango, papaya and plum) with symptoms of anthracnose, were collected in markets of four Divisions in West Cameroon; namely Bamboutos, Mbam and Inoubou, Mougo and Noun on July 2016. These fruits were putted in appropriate plastic bags labelled and transported into the Research Unit of Phytopathology and Agricultural Zoology (UR PHYZA) of the University of Dschang for isolation of *Colletotrichum* spp. The fruits were primarily washed separately with tap water and fragments of disease tissues of about 2 mm² excised from diseased lesions. The cut pieces were surface sterilized in 5 % sodium hypochlorite solution for five minutes and rinsed three times in sterile distilled water, placed on hydrophilic paper to remove excess water and plated on Potato Dextrose Agar (PDA) medium amended with chloramphenicol (20 mg/L) to control bacterial contamination. The plates were incubated at at $24 \pm 2^{\circ}$ C. Fine hyphae that grew from diseased tissue on the culture media were subcultured on fresh PDA. Colonies of Colletotrichum sp., were morphologically identified and subjected to further subculturing on PDA. Pure cultures of the isolates were sealed in Petri dishes with parafilm paper and stored in a refrigerator at 4° C for further studies.

Pathogenicity test

Apparently healthy and freshly harvested mature fruits of avocado, banana, mango, pawpaw and plum collected from the market

Int. J. Pure App. Biosci. 6 (4): 1-10 (2018)

ISSN: 2320 - 7051

in Dschang, were washed under running tap water and surface sterilized for five minutes in 5 % sodium hypochlorite solution. This was immediately followed by three rinses in sterile distilled water and dried with sterile tissue paper. The sterilized fruits were placed on plastic box in which humidity was maintained using sterile hydrophilic cotton pads soaked with sterile distilled water. Two methods of inoculation; wound inoculation method and dropping inoculation method were used.

In wound inoculation method, each fruit species was inoculated using the method of Lin *et al.*²⁰, which included pin-pricking the fruits to a 5 mm diameter with a sterile needle in the middle portion of fruit and then placing 5 mm diameter each of mycelia fragments from each pure culture of *Colletotrichum*

isolates from different fruit species onto the wound. In dropping inoculation method, each of the fruits received a drop of 50 µl of conidial suspension of different Colletotrichum isolates, previously prepared and adjusted to 5×10^4 conidia/ml by a haemocytometer²¹. Control fruits did not receive any inoculum. Each inoculated fruit species was incubated in the containers at room temperature $(24 \pm 2^{\circ} \text{ C})$ in an experiment arranged in a completely randomized design with Colletorichum isolates (table 1) as treatment and five replications.

After five days of incubation, each incubated fruit was examined, and the lesion areas induced were measured using a graph paper.

Isolate code	Host fruit	Scientific name of fruit
AVIS1	Avocado	Persea americana
AVIS2	Avocado	Persea americana
BAIS1	Banana	Musa sapientum
BAIS2	Banana	Musa sapientum
MAIS1	Mango	Mangifera indica
MAIS2	Mango	Mangifera indica
PAIS	Pawpaw	Carica papaya
SAIS	Plum	Dacryodes edulis

Table 1: Origin of Colletotrichum spp. isolates used for the study

Statistical Analysis

Data collected on lesion areas were subjected to analysis of variance (ANOVA) using SPSS software version 21.0, and mean values were separated using Duncan's Multiple Range test (DMR) and LDS Fisher test at a 5 % probability level.

RESULTS

Species of *Colletotrichum* develop on various fruits, inducing necrosis in the form of black spots. Cross-infection test showed variability in lesion formation of the different *Colletotrichum* isolates on the host fruit and other fruits. Lesion areas induced by the different isolates of *Colletotrichum* on fruit, varied with the fruit and the isolate as well as

Copyright © July-August, 2018; IJPAB

its origin. The controls were however, not infected any fruits. The lesion area observed on the different fruits inoculated by the wound inoculation method was greater than that observed on the fruits inoculated by the dropping inoculation method. The BAIS2 isolates did not develop any lesions on the other four fruits, except on the banana whatever the method used for inoculation.

The lesions areas induced by the different isolates of *Colletotrichum* on avocado fruits, varied with respect to the isolate of *Colletotrichum*, as well as the method of inoculation. The analysis of lesions developed by different *Colletotrichum* spp., showed that the isolates of BAIS1, MAIS1, PAIS and SAIS had developed the

ISSN: 2320 – 7051

Keuete Kamdoum et alInt. J. Pure App. Biosci. 6 (4): 1-10 (2018)significantly identical surfaces lesion thanMAIS2. The Ithose produced by AVIS1 (isolated from
avocado). These lesion areas were greater than
those induced by the other Colletotrichumisolates were the
did not induce lethose induced by the other ColletotrichumThe resu
areas developed
the wound inoculation method and betweenThe wound2.49 and 2.77 cm² with the dropping
isolate isolated from avocado produced a
lesion area similar to that produced by isolateThe AVIS2the same isolates

MAIS2. The lesions developed by these isolates were the smallest. The BAIS2 isolate did not induce lesions on the avocados.

The results also showed that the lesion areas developed by the different isolates with the wound inoculation method was significantly higher than those developed by the same isolates with the dropping inoculation method.

Table 2: Lesion areas developed by differen	Colletotrichum isolates on avocado (cm	12)
---	--	-----

Divisions Mbam and Inoubou **Bamboutos** Noun Mungo 2nd method 2nd method 2nd method 2nd method 1st method 1st method 1st method 1st method Isolate AVIS1 23.12aA* 1.65aB 26.34aA 1.69aB 20.9aA 1.91aB 21.09aA 2.17aB AVIS2 2.72bA 0.8bB 2.49bA 0.79bB 2.7bA 1.12bB 2.53bA 1.23bB BAIS1 25.76aA 1.71aB 25.15aA 1.75aB 24.63aA 1.91aB 26.11aA 2.01aB BAIS2 1 1 1 1 1 1 1 / MAIS1 26.63aA 1.84aB 22.96aA 1.74aB 25.01aA 2.05aB 22.41aA 2.05aB MAIS2 2.88bA 0.71bB 2.64bA 0.74bB 2.77bA 0.92bB 2.64bA 1.23bB PAIS 23.78aA 1.65aB 25.42aA 1.69aB 25.22aA 1.91aB 24.77aA 2.04aB SAIS 21.99aA 1.78aB 21.88aA 1.72aB 19.1aA 1.99aB 20.51aA 2.15aB

*Means in columns followed by the same small letter are not significantly different by Duncan's Multiple Range test at 5 % probability level and means in the line followed by the same capital letter are not significantly different by LDS Fisher test at 5 % probability level. / signify that the isolates did not produce a lesion.

The lesion areas developed by the different *Colletotrichum* spp. on banana, varied with the isolate, origin of isolates and the method used for inoculation. The BAIS2 isolate from banana developed a lesion area was significantly greater than those induced by other isolates of *Colletotrichum*. The isolates AVIS1, BAIS1 (obtained from banana), MAIS1, PAIS and SAIS produced similar

lesion areas, which were intermediate. The lesions produced by AVIS2 isolates from avocado and MAIS2 from mango were the smallest (table 3).

With the wound inoculation method, *Colletotrchum* spp. induced on banana the larger lesions than those observed on bananas inoculated with dropping inoculation method.

Int. J. Pure App. Biosci. 6 (4): 1-10 (2018) Table 3: Lesion areas developed by different *Colletotrichum* isolates on banana (cm²)

	Divisions							
	Baml	ooutos	Noun		Mbam and Inoubou		Mungo	
Isolate	1 st method	2 nd method						
AVIS1	4.63bA*	1.56bB	4.22bA	1.52bB	4.35bA	1.8bB	4.56bA	1.95bB
AVIS2	0.94cA	0.48cB	0.93cA	0.51cB	0.9cA	0.94cB	0.85cA	0.95cB
BAIS1	4.76bA	1.54bB	6.12bA	1.53bB	4.44bA	1.82bB	5.2bA	2.06bB
BAIS2	15.17aA	2.62aB	15.91aA	2.51aB	16.13aA	3.1aB	12.1aA	3.15aB
MAIS1	5.55bA	1.56bB	5.73bA	1.51bB	4.64bA	1.84bB	5.36bA	1.9bB
MAIS2	0.93cA	0.51cB	1.11cA	0.53cB	1.05cA	0.96cB	0.99cA	1.02cB
PAIS	4.25bcA	1.56bB	5.19bA	1.52bB	4.16bA	1.85bB	3.89bA	1.96bB
SAIS	3.98bcA	1.55bB	5.72bA	1.53bB	4.82bA	1.91bB	3.92bA	1.89bB

*Means in columns followed by the same small letter are not significantly different by Duncan's Multiple Range test at 5 % probability level and means in the line followed by the same capital letter are not significantly different by LSD Fisher test at 5 % probability level; / signify that the isolates did not produce a lesion.

On mango, the different Colletotrichum spp. induced lesions that varied with respect to the isolates and their origin. In general, lesion areas observed with the wound inoculation method were significantly larger than those observed with the dropping inoculation method. The results showed that MAIS1 isolated from mango, produced on the same fruit lesion surfaces were similar to those produced by AVIS1, BAIS1, MAIS1, PAIS and SAIS. These isolates produced the largest lesions. Similarly, MAIS2 from mango and

AVIS2 induced significantly identical lesion surfaces, except that these lesions were smaller. The BAIS2 isolate from the banana did not cause injury to the mangoes.

However, the lesion areas developed by the different isolates of Colletotrichum following inoculation through wounds created on the fruit, were significantly higher than those induced by these same Colletotrichum spp. following inoculation with conidial suspension deposits

Table 4: Lesion areas developed by differen	t Colletotrichum isolates on mango	(cm ²)
---	------------------------------------	--------------------

	Divisions							
	Bamboutos		Noun		Mbam and Inoubou		Mungo	
Isolate	1 st method	2 nd method	1st method	2 nd method	1st method	2 nd method	1st method	2 nd method
AVIS1	26.33aA*	2.17aB	25.01aA	2.14aB	27.6aA	2.21aB	25.22aA	2.22aB
AVIS2	3.15bA	1.4bB	2.62bA	1.54bB	2.39bA	1.64bB	2.9bA	1.61bB
BAIS1	24.03aA	2.14aB	27.66aA	2.09aB	21.82aA	2.1aB	25.86aA	2.06abB
BAIS2	/	/	/	/	/	/	/	/
MAIS1	26.54aA	2.18aB	24.67aA	2.25aB	27.57aA	2.17aB	24.54aA	2.32aB
MAIS2	3.16bA	1.65bB	3.15bA	1.63bB	2.6bA	1.54bB	2.86bA	1.62bB
PAIS	22.91aA	2.06abB	27.98aA	2.05aB	26.43bA	2aB	26.51aA	2.07abB
SAIS	23.94aA	2.13aB	25.2aA	2.07aB	24.64aA	2.01aB	19.09aA	2.15aB

*Means in columns followed by the same small letter are not significantly different by Duncan's Multiple Range test at 5 % probability level and means in the line followed by the same capital letter are not significantly different by LSD Fisher test at 5 % probability level. / signify that the isolates did not produce a lesion.

Int. J. Pure App. Biosci. 6 (4): 1-10 (2018)

Cross-infection test of the different isolates on papaya showed that *Colletotrichum* isolate expressed different lesion areas (Table 5). In Bamboutos, the AVIS1, BAIS1, MAIS1 and PAIS isolates induced similar lesion areas that were significantly greater than those induced by the other isolates. Similarly, the AVIS2, MAIS2 and SAIS isolates expressed significantly similar lesion areas. In all divisions, the BAIS2 isolates did not induce any lesion.

Table 5: Lesion areas developed by differen	t Colletotrichum isolates on p	bapaya (cm²)
---	--------------------------------	--------------

Divisions								
	Bamboutos		Noun		Mbam and Inoubou		Mungo	
Isolates	1 st method	2 nd method	1 st method	2 nd method	1st method	2 nd method	1 st method	2 nd method
AVIS1	34.25aA*	3.13aB	40.99aA	3.09aB	40.49aA	3.31aB	35.95aA	3.26aB
AVIS2	11.19bA	1.69bB	6.38bA	1.69bB	7.44bA	1.83bB	6.55bA	1.91bB
BAIS1	40.38aA	2.99aB	40.24aA	2.98aB	40.08aA	3.35aB	38.73aA	3.35aB
BAIS2	/	/	/	/	/	/	/	/
MAIS1	40.55aA	3.25aB	31.51aA	2.94aB	39.9aA	3.17aB	40.23aA	3.25aB
MAIS2	11.87bA	1.68bB	9.05bA	1.63bB	10.87bA	1.91bB	10.8bA	1.84bB
PAIS	30.18abA	2.94aB	40.54aA	3.09aB	35aA	3.2aB	40.22aA	3.25aB
SAIS	17.47bA	3.03aB	24.27abA	2.97aB	21.79abA	3.27aB	20.83abA	3.29aB

*Means in columns followed by the same small letter are not significantly different by Duncan's Multiple Range test at 5 % probability level and means in the line followed by the same capital letter are not significantly different by LDS Fisher test at 5 % probability level. / signify that the isolates did not produce a lesion.

On plum, the results showed that AVIS1, BAIS1, MAIS1, PAIS and SAIS isolates produced the largest lesions, which more significantly greater than those produced by other *Colletotrichum* isolates. AVIS2 and MAIS2 isolates developed small lesion areas. BAIS2 did not induce any lesion on plum. In Bamboutos Division with the wound inoculation method, the isolates AVIS1, BAIS1, MAIS1, PAIS and SAIS, produced larger lesion areas, which were significantly identical. The AVIS2, BAIS1, MAIS2 and SAIS isolates, induced small lesions areas and were significantly identical.

The lesion areas induced, by the different *Colletotrichum* isolates with the wound inoculation method were significantly greater than those obtained with the dropping inoculation method.

			I ()					
	Divisions							
	Bamboutos		Noun		Mbam and Inoubou		Mungo	
Isolates	1 st method	2 nd method	1st method	2 nd method	1 st method	2 nd method	1 st method	2 nd method
AVIS1	11.52aA*	0.52aB	8.14aA	0.59aB	9.14aA	0.5aB	7.97aA	0.52aB
AVIS2	3.68bA	0.4bB	0.51bA	0.45bB	0.82bA	0.27bB	0.83bA	0.31bB
BAIS1	6.52abA	0.56aB	8.58aA	0.54aB	8.35aA	0.53aB	7.39aA	0.49aB
BAIS2	/	/	/	/	/	/	/	/
MAIS1	9.26aA	0.48abB	9.32aA	0.53aB	8.83aA	0.47aB	9.88aA	0.52aB
MAIS2	2.8bA	0.44bB	0.69bA	0.44bB	0.69bA	0.5aB	0.76bA	0.29bB
PAIS	10.68aA	0.51aB	9.56aA	0.59aB	9.35aA	0.47aB	10.3aA	0.49aB
SAIS	6.43abA	057aB	7.67aA	0.56aB	6.75abA	0.54aB	6.45aA	0.5aB

Table 6: Lesion areas developed by different *Colletotrichum* isolates on plum (cm²)

*Means in columns followed by the same small letter are not significantly different by Duncan's Multiple Range test at 5 % probability level and means in the line followed by the same capital letter are not significantly different by LDS Fisher test at 5 % probability level; / signify that the isolates did not produce a lesion.

Int. J. Pure App. Biosci. 6 (4): 1-10 (2018)

ISSN: 2320 - 7051

Dendrogram resulting from the hierarchical cluster analysis of lesion areas induced by different Colletotrichum spp. isolates on various fruits showed three groups (figure 1). The first Group consisted of AVIS2 and MAIS2 isolates produced smaller lesions on different fruit. The second group composed of

AVIS1, PAIS, BAIS1, MAIS1 and SAIS isolates induced the larger lesions on different fruits except on banana, though the lesion areas were intermediate. The third group comprised of BAIS2 formed lesion only on banana fruit, the original host.

Figure 1: Cluster analysis based on the lesion areas produce on different fruit by Collectotrichum spp.

DISCUSSION

The results of this study showed that Colletotrichum spp., isolated from the fruits of avocado, banana, mango, pawpaw and plum showed variation in lesions formation. These lesion areas varied with the fruit and the isolates as well as its origin. The ability of Colletotrichum spp., to develop on a large variety of fruits and causing significant postharvest losses has been reported by several authors 19,22,23,24

Lesion areas produced on avocado, banana, mango, pawpaw and plum fruits irrespective of the method used by the various isolates in general, made it possible to rank the species of *Colletotrichum* into three groups; The first group consisting of AVIS1, BAIS1, MAIS1, PAIS and SAIS, the second group composed of AVIS2 and MAIS2 and the third group consisting of BAIS2. These results are in accordance with those of Keuete et al.²⁵, who, on a study on the Cultural and morphological variations of the fungus also found three groups with the same isolates. The

Copyright © July-August, 2018; IJPAB

difference in the lesion areas developed by these different isolates on fruits could be due the existing diversity within to this Colletotrichum spp. These results corroborate with those reported by Shanti et al.¹¹ who showed that the spores of Colletotrichum gloeosporioides inoculated after injuring mangoes, pawpaw and rambutans fruits induced similar anthracnose lesions. The same, Coates¹² Giblin and showed that Colletotrichum gloeosporioides inoculated on avocado and mango fruits produced symptoms of anthracnose in significantly different degrees. Phoulivong et al.²⁶ showed that Colletotrichum asianum, C. fructicola, C. siamense and C. simmondsii produced almost identical lesion areas on guava, mango, pawpaw and apple fruits. On the other hand, these results are different from those reported by Lakshmi et al.²⁷ which found that isolates of C. gloeosporioides produced larger lesions on the leaves of the original host compared to the lesion areas developed on the leaves of alternative hosts. This difference could be due

to the high sensitivity and the high-water content of fruits compared to the leaves. Other authors reported that larger lesions of *Colletotrichum gloeosporioides* isolates produced on their original host compared than the alternative host^{14,28}.

BAIS2 following The isolates inoculation on the different fruits caused lesions only on banana, which was its original host fruit. Bananas contain substances that could condition the development of BAIS2 isolates unlike other fruits. These results corroborate those of several authors who stated that some species of Colletotrichum develop only in a single host. This is the case of C. kahawae, which infects only coffee, C. coccodes, which grows only on tomatoes and potatoes, C. falcatum which attacks sugar cane and C. musae which infects banana^{15,17,19,29,30}. Similar cross infection tests carried out on Colletotrichum spp. isolates from cashew, mango, papaya and passion fruit produced necrotic and depressed lesions on fruits, except on passion fruit, which was susceptible to its isolates only³¹. BAIS2 isolate produced large lesions than those developed by other isolates, suggesting that BAIS2 species could be the most aggressive on banana.

The lesions developed on the wounded fruits were larger than those developed on fruits that received a conidial suspension of the different isolates. Wounds created might have stressed the fruits, causing a gradual reduction in the elements involved in the fruit's defence mechanism.

CONCLUSION

Cross-infectivity of Colletotrichum isolates from fruits could produce anthracnose symptoms not only on original but also on non-original hosts. It also showed the existence three groups of within Colletotrichum isolates. In addition, wound inoculation method produced larger lesions than spraying inoculation method. These results suggest a molecular characterisation of Colletotrichum isolates for better identification and development of control strategies for the fungus.

Acknowledgement

Authors acknowledge the Research Unit of Phytopathology and Agricultural Zoology, University of Dschang, Cameroon for providing some Laboratory Facilities and grateful to Dr. Lekeufack Martin for the proofreading of the manuscript.

REFERENCES

- Rao A.V. AND Ali A., Biologically active phytochemicals in human health: Lycopene. *International Journal of Food Properties*, **10(2)**: 279-288 (2007).
- 2. Ecoert, Productions en conduite biologique, 157p (2001).
- F.A.O., Groupe Intergouvernemental sur la banane et les fruits tropicaux Situation actuelle et perspectives à court terme. FAO, Yaoundé (Cameroun), 7p (2011).
- M.I.N.E.P.A.T., Rapport sur l'étude des filières vivrières destinées à l'exportation dans les marchés européens. 55p (2012).
- M.I.N.A.D.E.R., Ministère de l'Agriculture et du Développement Rurale. Annuaire Statistique du Cameroun 2010; 1-89 p (2010.)
- Kader A.A., Increasing food availability by reducing postharvest losses of fresh produce. *International Society Horticultural Science*, 1(3): 2169-2175 (2005).
- Keuete K.E., Inventaire champignons post-récoltes des fruits d'avocatier et essai de lutte antifongique par l'utilisation des extraits de quelques plantes. Thèse de *Master of Science* en Biologie Végétale. Université de Dschang, Cameroun : pp 1-79 (2014).
- Cannon P.F., Damm U., Johnston P.R. and Weir B.S., *Colletotrichum*, current status and future directions. *Studies in Mycology*, 73: 181-213 (2012).
- 9. Damm U., Cannon P.F., Woudenberg J.H.C. and Crous P.W., The *Colletotrichum acutatum* species complex. *Studies in Mycology*, **73:** 37-113 (2012).
- 10. Weir B.S., Johnston P.R. and Damm U., The *Colletotrichum gloeosporioides*

Copyright © July-August, 2018; IJPAB

ISSN: 2320 - 7051

species complex. *Studies in Mycology*, **73**: 115-180 (2012).

- 11. Shanti W.W., Yasodha D. and Deepthi W., Host Specificity of *Colletotrichum* gloeosporioides and Botryodiplodia theobromae isolates from Mango, Papaya and Rambutan and their Response to *Trichoderma harzianum*. Conference on International Research on Food Security, Natural Resource Management and Rural Development, University of Hohenheim, October 7-9, 5p. (2008).
- Giblin F. and Coates L., Avocado Fruit Responses to *Colletotrichum* gloeosporioides (Penz) Sacc In: Proceedings VI World Avocado Congress, Viña Del Mar, Chile. 12 - 16 Novembre, 6p (2007).
- Sanders G.M. and Korsten L., A comparative morphology of South African avocado and mango isolates of *Colletotrichum gloeosporioides*. *Canadian Journal of Botany*, 81: 877-885 (2003).
- Phoulivong S., McKenzie E.H.C. and Hyde K.D., Cross infection of *Colletotrichum* species; a case study with tropical fruits. *Current Research in Environmental & Applied Mycology*, 2(2): 99-111 (2012).
- Freeman S., Minq D., Maymon M. and Zverbil A., Genetic diversity within *Colletotrichum acutatum* sensu Simmonds. *Phytopathlogy*, **91:** 586-592 (2001).
- Sreenivasaprasad S. and Talhinhas P., Genotypic and phenotypic diversity in *Colletotrichum acutatum*, a cosmopolitan pathogen causing anthracnose on a wide range of hosts. *Molecular Plant Pathology*, 6: 361-378 (2005).
- Kim H., Lim T.H., Kim J., Kim Y.H. and Kim H.T., Potential of cross-infection of *Colletotrichum* species causing anthracnose in persimmon and pepper. *Plant Pathology Journal*, 25: 13-20 (2009).
- 18. Prihastuti H., Cai L., Chen H., McKenzie E.H.C. and Hyde K.D., Characterization of

Colletotrichum spp associated with coffee berries in Chiang Mai, Thailand. *Fungal Diversity*, **39:** 89-109 (2009).

- Yang Y.L., Liu Z., Cai L. and Hyde K.D., New species and notes of *Colletotrichum* on daylilies (*Hemerocallis* spp.). *Tropical Plant Pathology*, **37**(3): 165-174 (2012).
- Lin Q., Kanchana-udomkarn C., Jaunet T. and Mongkolporn O., Genetic analysis of resistance to pepper anthracnose caused by *Colletotrichum capsici. Thai Journal of Agricultural Science*, 35: 259-264 (2002).
- Ratanacherdchai K., Wang H., Lin F. and Soytong K., ISSR for comparison of crossinoculation potential of *Colletotrichum capsici* causing chili anthracnose. *Microbiology Research*, 4(1): 76-83 (2010).
- 22. Cai L., Hyde K.D., Taylor P.W.J., Weir B.S., Waller J., Abang M.M., Zhang J.Z., Yang Y.L., Phoulivong S., Liu Z.Y., Prihastuti H., Shivas R.G., McKenzie E.H.C. and Johnston P.R., A polyphasic approach for studying *Colletotrichum*. *Fungal Diversity*, **39**: 183-204 (2009).
- Hyde K.D., Cai L., Cannon P.F., Crouch J.A., Crous P.W. and Damm U., *Colletotrichum* names in current use. *Fungal Diversity*, **39**: 147-182 (2009).
- Tarnowski T.L.B. and Ploetz R.C., First report of *Colletotrichum boninense*, *C. capsici*, and a *Glomerella* sp. as causes of postharvest anthracnose of passion fruit in Florida. *Plant Disease*, **94:** 786-792 (2010).
- 25. Keuete K.E., Tsopmbeng N.G.R. and Kuiate J.R., Cultural and morphological variations of *Colletotrichum* spp associated with anthracnose of various fruits in Cameroon. *International Journal* of *Environment*, *Agriculture* and *Biotechnology*, **4**: 968-974 (2016).
- Phoulivong S., Cai L., Chen H., McKenzie E.H.C., Abdelsalam K., Chukeatirote E. and Hyde K.D., *Colletotrichum gloeosporioides*is not a common pathogen on tropical fruits. *Fungal Diversity*, 44: 33-43 (2010).

Int. J. Pure App. Biosci. 6 (4): 1-10 (2018)

- Lakshmi B.K.M., Reddy P. N. and Prasad R.D., Cross-infection Potential of *Colletotrichum gloeosporioides* Penz. Isolates causing anthracnose in subtropical fruit crops. *Tropical Agricultural Research*, 22(2): 183-193 (2011).
- Korsten L., Advances in control of postharvest diseases in tropical fresh produce. *International Journal of Postharvest Technology and Innovation*, 1(1): 48-61 (2006).
- 29. Cannon P.F., Buddie A.G. and Bridge P.D., The typification of *Colletotrichum*

gloeosporioides. Mycotaxon, **104:** 189-204 (2008).

- Than P.P, Prihastuti H., Phoulivong S., Taylor P.W.J. and Hyde K.D., Review: Chili anthracnose disease caused by *Colletotrichum* species. *Journal Zhejiang University*, 9: 764-778 (2008).
- Lima F.R.M., Oliveira S.M.A. and Menezes M., Enzymatic characterization and crossed pathogenicity of *Colletotrichum* spp. associated with postharvest diseases. *Fitopatologia Brasileira*, 28(6): 620-625 (2003).